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An accurate standard-map approach, instead of the approximate standard-map approach, is
developed for the analytical prediction of the onset of a new resonant overlap forming a new
resonant-separatrix web in the stochastic layer. This accurate approach applies to the
twin-well Du$ng oscillator for illustration of the resonant overlap phenomena in stochastic
layers. The excitation strengths are obtained analytically for the onset of the speci"ed
resonant-separatrix webs in the stochastic layer. This accurate approach gives a very good
prediction compared to numerical results for the lower order resonant overlap. When
excitation strength is very weak, the accurate and approximate standard-map methods are
in good agreement, and the accurate one is applicable to non-linear systems with strong
excitations. However, the further improvement should be completed for a more accurate,
analytical prediction of the onset of a new resonant overlap in stochastic layers of non-linear
Hamiltonian systems with periodical excitations.
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1. INTRODUCTION

The chaotic motion in a non-linear Hamiltonian system is formed through resonant
interactions. These interactions result in resonant overlap phenomena, and such a chaotic
motion is also characterized by the resonance. In 1964, Henon and Heiles [1] "rst observed
internal resonant layers of a two-degrees-of-freedom (d.o.f.) non-linear system numerically.
Stochasticity in a motion layer in the neighborhood of the resonant separatix is generated
by the deterministic Hamilton's equations without additional ad hoc &&stochastic'' forces.
When the stochasticity goes from being local to global, the motion in the motion layer
becomes chaotic, and the motion layer is termed the resonant layer. Therefore, the resonant
layer is a domain of chaotic motion in the vicinity of the resonant separatrix. A similar
de"nition is given in Lichtenberg and Lieberman [2, p. 51]. In 1998, Han and Luo [3]
developed an accurate standard-map approach for the prediction of the onset of resonant
layers in non-linear dynamical systems. In 1999, Luo and Han [4] also used a modi"ed
Chirikov overlap criterion to predict of the resonant layer appearance. In the same year,
Luo et al. [5] developed an energy spectrum method for numerical predictions of the onset
of resonance in the stochastic layer. In this paper, such a standard-map approach will be
presented for the investigation of the resonant overlap characteristics in the stochastic
layers of non-linear systems. The stochastic layer "rst described in reference [6] is the
domain of chaotic motion in the vicinity of the separatrix. For explanation of such a chaotic
motion in non-linear Hamiltonian systems, consider a Hamiltonian system possessing
a homoclinic orbit (or separatrix). When an external, periodic forcing acts on the
0022-460X/01/100821#16 $35.00/0 ( 2001 Academic Press
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Hamiltonian system, many resonances appear in the neighborhood of the separatrix, as
illustrated in Figure 1 though the twin-well Du$ng oscillator. The resonant conditions are
obtained from the energy analysis of the non-linear system. Each resonance has its own
separatrix, and the characteristics of the resonant separatrix to its sub-resonance are similar
to the non-resonant separatrix. When chaos occurs, the self-similarity can be developed
through renormalization group technique (see reference [2]).

The earlier, quantitative studies of the stochastic layers were presented in references [6, 7]
even though the chaotic motion in the neighborhood of the separatrix was qualitatively
described [8] in 1899. In 1968, Zaslavsky and Filonenko [6] "rst introduced the
approximate separatrix map (or whisker map [9]) to investigate the one-dimensional
motion of a charged particle in the "eld of a travelling wave under a perturbation. The
approximate separatrix map is derived under the following three assumptions. (1) The "rst
complete elliptic integral is approximated by K (k)+log(4/J1!k2 ) when periodic orbits
of the unperturbed system are close to the separatrix (e.g., reference [10]). (2) Only the
period of the libration is used for the estimate of phase change, without the rotation. (3) The
energy change is computed through the separatrix [9, 11]. For the stochastic instability of
trapped particles, Zaslavsky and Filonenko [6] also linearized the whisker map into
a standard map in the neighborhood of an assumed resonance. Therefore, the following two
additional assumptions are adopted. (4) The whisker map is approximated at the period-1
"xed point based on a primary resonance. (5) The primary resonant condition is assumed
but not derived from the original dynamic systems. A similar procedure was used to
investigate the chaotic motion in the vicinity of the separatrix under high-frequency
excitation [12]. From the energy analysis of non-linear systems, the resonant motions in
regions separated by the separatrix in phase space distinguish themselves [4, 13, 14].
Therefore, such a standard-map approach cannot provide a satisfactory prediction of the
stochastic layer for the original system.

In recent years, the approximate whisker map is used extensively because it provides
a better prediction of the stochastic layer than the standard map [15}22]. For the energy
Figure 1. Resonant conditions in the neighborhood of separatrix for the twin-well-Du$ng oscillator
(a

1
"a

2
"1)0).
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increment computation, in 1995, Zaslavsky and Abdullaev [16] introduced a shifted
separatrix map. In 1990, Rom-Kader [20] derived the approximate whisker map through
the Melnikov function and used the whisker map to predict transport rates statistically and
numerically. The escape rates in the vicinity of homoclinic tangles were investigated [21],
but assumptions (1)}(3) were still used to derive the approximate whisker map. In 1995,
Rom-Kader [22] determined the secondary homoclinic bifurcation through the simple zero
of the Hamiltonian energy at the second iteration of the approximate whisker map. In 1998,
Treschev [23] presented a qualitative relationship between the width (w) of the stochastic
layer and the width (d) of the lobe domain, such as w/d&1/logk and k is a multiplier at the
corresponding hyperbolic point.

Reichl and Zheng [24, 25] estimated the width of the stochastic layer (actually, excitation
strength) for the undamped Du$ng oscillator through the approximate standard-map
approach and Chirikov overlap criterion presented in reference [10]. The Chirikov overlap
criterion usually gives the correct order of magnitude for excitation strength even though
the self-similarity of resonance is ignored. To address the self-similarity of resonance, the
renormalization group technique was proposed for the estimate of excitation strength in
references [26, 27]. In 1986, Lin and Reichl [28] used this technique to investigate the
chaotic motion of a particle in an in"nite square well potential. For the Chirikov overlap
criterion and the renormalization group technique, only two of the in"nite primary
resonances are modelled.

From the above literature survey, the resonant overlap phenomena in stochastic layers
need to be further investigated. In this paper, an accurate standard-map approach is
developed for the prediction of the onset of the resonant-separatrix web formed through the
resonant overlap. This approach applies to the twin-well-potential-Du$ng oscillator for
illustrations of the stochastic layer. Based on the approximate standard-map approach, the
prediction of excitation strengths for the stochastic layer in the Du$ng oscillator is also
presented.

2. AN ACCURATE STANDARD-MAP APPROACH

Consider a non-linear Hamiltonian system:

x5 "f (x)#g (x, t), x"A
x

yB3R2, (1)

where f (x) is an unperturbed Hamiltonian vector "eld on R2 and g (x, t) is periodic in time
with period ¹"2n/X, and

f(x)"A
f
1
(x)

f
2
(x)B and g (x, t)"A

g
1
(x, t)

g
2
(x, t)B (2)

are su$ciently smooth (Cr, r*2) and bounded on bounded sets DLR2 in phase
space. Consider the system in equation (1) possessing the total Hamiltonian
H(x, t)"H

0
(x)#H

1
(x, t) in which H

1
(x, t) is a perturbation of Hamiltonian, and

f
1
"

LH
0

Ly
, f

2
"!

LH
0

Lx
, g

1
"

LH
1

Ly
, g

2
"!

LH
1

Lx
. (3)

Because the stochastic layer is formed in the vicinity of the separatrix [8], the perturbed
orbit of equation (1) intersects with at least three families of its unperturbed periodic orbits,
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as shown in Figure 2. Such periodic orbits are termed (a, b, c)-orbits for convenience. Under
the periodic perturbation, the stochastic layer of equation (1) in the vicinity of separatrix
(q

0
(t)), illustrated in Figure 3, consists of p-sub-layers pertaining to the qp (t)-orbits

(p"a, b, c). For any p-layer, the changes of energy H
0
and phase u, for time transition from

t
i
to t

i
#¹p in equation (1), give a discrete map:

E
i`1

"E
i
#DHp(u

i
) and u

i`1
"u

i
#Dup(E

i`1
), (4)

where E
i
"H(q (t

i
)), u

i
"u(q(t

i
)). The energy and phase changes Dup(E

i`1
) and DHp(u

i
)

are

Dup(E
i`1

)+X¹p(Ei`1
) and DHp(u

i
)+P

Ta(Ei)`ti

ti

[H
0
, H

1
] dt"P

Tp(Ei)`ti

ti

( f
1

g
2
!f

2
g
1
) dt,

(5)

where [), )] denotes the Poisson bracket. With equation (5), equation (4) is termed the
accurate whisker map. The energy and phase changes for equation (1) over one period ¹p of
the p-orbit are explained in Figure 4. In equation (4), the energy increment for the system in
equation (1) over one period is obtained approximately, but the phase change is expressed
through the exact expressions of natural frequencies instead of their approximations near
the separatrix in references [2, 6, 10]. With equation (5), equation (4) will be used for
deriving the accurate standard map later on. The second equation in equation (5) can
reduce to the energy increment along the separatrix as ¹pPR, which was used in the
traditional standard map in references [2, 10]. As ¹pPR, it implies that the p-orbits
(p"a, b, c) approach to the separatrix, and the energy increment along the separatrix is
computed by

DHh(u
i
)+ lim

Tp?= P
Ta(Ei)`ti

ti

[H
0
, H

1
] dt" lim

Tp?= P
Tp(Ei)`ti

ti

( f
1

g
2
!f

2
g
1
) dt, (6)

given in references [9, 10]. Equation (6) is used in the traditional standard map only for the
computation of the energy change along the separatrix in references [2, 10]. The energy
increment in equation (6) is the same as the splitting distance de"ned through the Melnikov
Figure 2. Three families of periodic orbits in the vicinity of the separatrix q
0
(t). The bold solid curve represents

the separatrix q
0
(t). The solid curve gives a-orbit, b-orbit and c-orbit (qa(t), qb (t) and qc(t)).



Figure 3. A stochastic layer of equation (1) formed by the Poincare mapping points of q (t) in the
e-neighborhood. The separatrix separates the stochastic layer into three sub-layers, a-, b- and c-layers.

Figure 4. The energy and phase changes of a perturbed orbit over one period ¹p based on Ep
i
.
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function [29]. Equation (6) is a special case of equation (5) as the unperturbed orbits
approach the separatrix. Therefore, equation (5) used in this paper is applicable for
computations of all the energy increments pertaining to the unperturbed periodic orbits in
the neighborhood of the separatrix, and through equation (5), similar results can be derived
as in reference [29]. In 1990, Luo and Han [4] presented an improved, traditional standard
map (or called the approximate standard map). Equation (6) was employed for energy
change computation. Although the improved, traditional standard map approach gives
a possible prediction of the onset of resonance in the stochastic layer compared to the
traditional standard map, it does not agree well with the numerical results when excitation
becomes strong. Such an improved traditional standard map approach will be given
through the sample problem in the next section.
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The resonant condition relative to the unperturbed p-orbit for a non-linear Hamiltonian
system with a periodical excitation [2, 30] is

mpup"npX, mp ,np3& are irreducible, (7)

where up"2n/¹p is a frequency of the p-orbit, X is the excitation frequency and & is the
natural number set. The resonant number sets in the stochastic layer for p"Ma, b, cN are
introduced:

Rep"M(mp : np ) Dmpup"npX, mp ,np3& are irreducible, and Dqp(t)!q
0
(t) D(eN. (8)

As in references [2, 10], linearization of equation (4) at the period-1 "xed point of the
(ma : na) resonance occurs at E

i`1
"E

i
"Ema@naa and u

i`1
"u

i
#2nma/na"u(mp : np)p #2nma/

na , thus, equation (4) becomes

Dup(E(ma : np)p )+
2nmp
np

and DHp(u(ma : np)p )"0, (9)

from which u(mp : np)p and E(mp : np)p can easily be determined. Perturbation of energy at E(mp : np)p ,
E
i
"E(mp : np)p #DE

i
, in equation (4), and use of equation (9) gives

w
i`1

"w
i
#G(mp : np)p DHp (u

i
) and u

i`1
+u

i
#w

i`1
, (10)

where w
i
"G(mp : np)p DE

i
and G(mp : np)p "L[Du(E

i`1
)]/LE

i`1
D
Ei`1/E(mp :np)p

. Equation (10) is
a generalized accurate standard map. In the derivation of equation (10), following the
conventional linearization procedure in reference [10], the phase change in equation (4) is
linearized, based on the exact resonant frequency satisfying equation (8), which is shown
later in the sample problem. As in references [3}5], the resonant conditions can be derived
from the energy analysis of equation (1), and all the unperturbed p-orbits (p"a, b, c)
relative to resonant conditions in three p-domains are used. However, for the traditional
standard map in references [6, 10], the resonant condition is selected arbitrarily, and only
one of three unperturbed p-orbits is used.

The criterion for the (ma : na)-resonant overlap creating a resonant-separatrix web in the
stochastic layer for equation (1) can be obtained through investigation of the exact
transition of the local to global stochasticity of equation (10). For determination of that
exact transition, those methods presented in references [2, 7, 31, 32] can be employed. For
instance, Greene [31, 32] developed a residual method for "nding the exact transition of the
local to global stochasticity when the last KAM torus is destroyed. Such a method can be
used to obtain critical values for the appearance of global stochasticity relative to the
(ma : na)-resonance. Other approaches presented in reference [2] can be used such as
renormalization techniques including loss of stability at rational iterations of the golden
mean.

For a speci"ed Gma@naa DHa
0
(u

i
)"K sin u

i
, equation (10) reduces to a traditional standard

map (or the Chirikov}Taylor map), i.e.,

w
i`1

"w
i
#K sinu

i
and u

i`1
+u

i
#w

i`1
. (11)

For the foregoing, the strength of the stochasticity parameter is K"K*+0)97162 in
references [31, 32] for the transition to global stochasticity in equation (11). Therefore, for
the special case, the perturbation strength of equation (1) is estimated from

G(mp : np)p DHp(u
ii
)+0)97162. (12)
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3. DUFFING OSCILLATOR

Consider the twin-well-potential Du$ng oscillator as an example of a periodically forced,
non-linear, Hamiltonian system to verify the accurate standard-map approach:

xK!a
1
x#a

2
x3"Q

0
cos(Xt), (13)

where a
1
'0, a

2
'0 and Q

0
and X are excitation strength and frequency. The Hamiltonian

of equation (13) is H"H
0
#H

1
:

H
0
"1

2
xR 2!1

2
a
1
x2#1

4
a
2
x4 and H

1
"!xQ

0
cos(Xt). (14)

The saddle point of equation (13) is (0,0) and the energy of separatrix is E
0
"0. The

homoclinic-orbit, a- and b-orbit of the unperturbed equation (13) can be determined. The a-
and b-orbits are located inside and outside of the separatrix, termed the inner and outer
orbits. For the inner orbit (H

0
"Ea(E

0
), the energy Ea , the response amplitude ea , the

natural frequency ua and the resonant condition [13] are

Ea"
(k2!1)a2

1
(2!k2)2a

2

, ea"S
2a

1
(2!k2)a

2

, ua"
Ja

2
ean

J2K (k)
, ua"mX. (15)

For the outer orbit (H
0
"Eb'E

0
), and the energy Eb , the response amplitude eb , the

natural frequency ub and the resonant condition [13] are

Eb"
(1!k2)k2a2

1
(2k2!1)2a

2

, eb"S
2k2a

1
(2k2!1)a

2

, ub"
Ja

2
ebn

2J2kK (k)
, ub"(2n!1)X. (16)

The energy increments of the perturbed orbit in the inner stochastic layer should be
computed through two inner orbits possessing the same energy in the two potential wells.
Therefore, the energy increment along the (m : 1) resonance of the inner orbit is

DHa
0
(u

0
)"2 P

Ta`t0

t0

( f
1

g
2
!f

2
g
1
) dt+2S

2

a
2

Q
0
nX sechA

mnK@(kma )

K (kma ) B sinu
0
, (17)

where u
0
"Xt

0
, K@(kma )"K(k@ma ), k{ma "J1!(kma )2 , and

f
1
"xR , f

2
"a

1
x!a

2
x3, g

1
"0, g

2
"Q

0
cos(Xt). (18)

In a like manner, the energy increment along the (2n!1 : 1)-resonance of the outer orbit is

DHb
0
(u

0
)+2S

2

a
2

Q
0
nX sech A

(2n!1)nK@(k2n~1b )

2K (k2n~1b ) B sinu
0
. (19)

The energy increment along the homoclinic orbit is obtained from equations (17) and (19):

DHh
0
(u

0
)" lim

Ta?=
DHa

0
" lim

Tb?=
DHb

0
(u

0
)

+2S
2

a
2

Q
0
nX sechA

nX

2Ja
1
B sinu

0
. (20)
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3.1. AN ACCURATE STANDARD-MAP APPROACH

3.1.1. ¹he inner stochastic layer

The phase change and the modulus is, from equation (15),

Dua(Ea)"
2nX

ua
"

2XJ2!k2K(k)

Ja
1

and k"S
2Ja2

1
#4a

2
Ea

a
1
#Ja2

1
#4a

2
Ea

. (21)

Substitution of equation (21) into equation (9) for the (m : 1) resonance produces

u
0
"0, n and XJ2!(kma )2K(kma )"mnJa

1
. (22)

Equations (21) and (22) give Ea"Ema . From equations (12), (17) and (19), the excitation
strength for the onset of resonant overlap in the inner stochastic layer is

Q
0
+

0)4858

nXGma S
a
2
2

coshA
mnK@(kma )

K (kma ) B , (23)

where

Gma"!

Xa
2

(kma )4 A
2!(kma )2

a
1

B
5@2

C2K(kma )!
2!(kma )2

1!(kma )2
E (kma )D , (24)

and E(kma ) is the second elliptic integral with modulus kma .

3.1.2. ¹he outer stochastic layer

The phase change and the modulus k are

Dub(Eb)"
2nX

ub
"

4XJ2k2!1K(k)

Ja
1

and k"S
a
1
Ja2

1
#4a

2
Eb

2Ja2
1
#4a

2
Eb

. (25)

Substitution of equation (25) into equation (9) for the (2n!1 : 1) resonance yields

u
0
"0, n and 2J2(k2n~1b )2!1K (k2n~1b )"(2n!1)nJa

1
. (26)

With equation (25), the solution to equation (26) is Eb"E2n~1b . Equations (12), (19) and
(26) gives the excitation strength for the onset of the (2n!1 : 1)-resonance overlap in the
outer stochastic layer:

Q
0
+

0)4858

nXG2n~1b S
a
2
2

coshA
(2n!1)nK@(k2n~1b )

2K(k2n~1b ) B , (27)

where

G2n~1b "!

2Xa
2

(k2n~1b )2 A
2(k2n~1b )2!1

a
1

B
5@2

CK(k2n~1b )!
1!2(k2n~1b )2

1!(k2n~1b )2
E (k2n~1b )D . (28)

The excitation strengths in equations (23) and (27) distinguish themselves. It indicates that
the distinction of the inner and outer stochastic layers is very signi"cant for a good
prediction of the resonant characteristics of the stochastic layer.



RESONANT-OVERLAP IN STOCHASTIC LAYERS 829
3.2. AN APPROXIMATE STANDARD MAP METHOD

The approximate standard map method was developed in references [4, 13]. The
procedure is also shown herein for a comparison of this approximate method with the
accurate approach presented in the previous section.

3.2.1. ¹he inner stochastic layer

As kP1, the "rst complete elliptic integral is approximated as in references [7, 10],

K (k)+
1

2
logA

16

1!k2B . (29)

From the foregoing, the energy Ea in equation (15) and an approximate period ¹a become

Ea+
(k2!1)a2

1
a
2

, ¹a"
2n
ua

+

1

Ja
1

logA
16a2

1
a
2
D Ea DB . (30)

The phase change for one period ¹a is

Du(Ea)"X¹a+
X

Ja
1

logA
16a2

1
a
2
D Ea DB . (31)

Substituting of equations (20) and (31) into equation (4) yields an approximate whisker
map:

E
i`1

+E
i
#2Q

0
nXS

2

a
2

sechA
nX

2Ja
1
B sinu

i
, u

i`1
+u

i
#

X

Ja
1

lnA
16a2

1
a
2
D E

i`1
DB . (32)

As in references [4, 13], setting E
i`1

"E
i
"Ema and u

i`1
"u

i
#2mn"uma#2mn for the

(m : 1) resonance in equation (32) gives

2Q
0
nX sechA

nX

2Ja
1
B sin uma"0,

X

Ja
1

ln A
16a2

1
a
2
D Ema DB"2mn. (33)

Solutions to equation (33) for Ema and uma are

DEma D"
16a2

1
a
2

e~(2mnJa1/X), uma"0, n. (34)

Perturbation of the energy at Ema in equation (32) (E
i
"Ema#DE

i
) and w

i
"!XDE

i
/

(Ja
1
DEma D ) gives a standard map in equation (11). The strength of stochasticity becomes

K"

2Q
0
nX2

Ja
1
DEma DS

2

a
2

sechA
nX

2Ja
1
B . (35)

From equation (12), the excitation strength for the onset of the (m : 1) resonant overlap in
the inner stochastic layer is

Q
0
+

7)7728

n A
a
1

X B
2

S
a
1

2a
2

e~*2mnJa1/X+ coshA
nX

2Ja
1
B . (36)
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For a
1
"2, a

1
"1 at X;1, equation (36) gives one-half of the result given in

references [24, 33]. This is because only one of the two potential wells in equation (13) was
considered in reference [24].

3.2.2. ¹he outer stochastic layer

The energy Eb in equation (16) and an approximate period ¹b, as kP1, are

Eb+
a2
1

a
2

(1!k2), ¹b+
2

Ja
2

logA
16a2

1
a
2
EbB . (37)

The phase change over one period ¹b is

Du (Eb)"X¹b+
2X

Ja
1

logA
16a2

1
a
2
EbB . (38)

Substituting equations (20) and (38) into equation (4) yields,

E
i`1

+E
i
#2Q

0
nXS

2

a
2

sechA
nX

2Ja
1
B sinu

i
, u

i`1
+u

i
#

2X

Ja
1

logA
16a2

1
a
2
E
i`1
B . (39)

Similarly, for E
i`1

"E
i
"E2n~1b and u

i`1
"u

i
#2(2n!1)n"u2n~1a #2(2n!1)n,

equation (39) becomes

2Q
0
nXS

2

a
2

sechA
nX

2Ja
1
B sinu2n~1b "0,

2X

Ja
1

logA
16a2

1
a
2
E2n~1b B"2(2n!1)n. (40)

Solving the foregoing gives E2n~1b and u2n~1b , i.e.,

E2n~1b "

16a2
1

a
2

e~(2n~1)nJa1/X, u2n~1b "0, n. (41)

In a similar fashion, linearization of equation (39) at E2n~1b with w
i
"!2XDE

i
/

(Ja
1
E2n~1b ) yields equation (11). Thus, the stochasticity parameter K is given by

K"

4Q
0
nX2

Ja
1
E2n~1b

S
2

a
2

sech A
nX

2Ja
1
B . (42)

The excitation strength for the onset of the (2n!1 : 1) resonant overlap in the outer
stochastic layer is

Q
0
"

3)8864

n A
a
1

X B
2

S
a
1

2a
2

e~*(2n~1)nJa1/X+ coshA
nX

2Ja
1
B (43)

The excitation strengths in equations (36) and (43) also distinguish themselves.

3.3. ILLUSTRATIONS

The energy spectrum approach developed in reference [5] is used for numerical
predictions, and the accurate, analytical predictions of excitation strength Q

0
are given
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through equations (23) and (27), and the approximate predictions through equations (36)
and (43). In Figure 5, the solid line gives the accurate prediction of excitation strength Q

0
at

a
1
"a

2
"1)0 for maxa DEa!E

0
D"0)055 and maxb DEb!E

0
D"0)076 relative to the

modulus k"0)9684 close to k"1 for the separatrix. The dashed line represents the
approximate prediction of Q

0
. The hollow-circle line gives the numerical results generated

by the energy spectrum method. The two predictions of Q
0

through two standard-map
approaches are very close, but both of them are di!erent from the numerical results because
of the phase linearization and energy increment approximation in the neighborhood of the
resonant separatrix. If the constraints maxa DEa!E

0
D"0)055 and maxb DEb!E

0
D"0)076

at a
1
"a

2
"1)0 do not apply to the analytical predictions, the excitation strength versus

the excitation frequency is illustrated in Figure. 6.
Figure 5. Excitation strengths for (a) the inner layer with max DEa!E
0
D"0)055 and (b) the outer layer with

max DEb!E
0
D"0)076 in the Du$ng oscillator (a

1
"a

2
"1)0);==, accurate;= ) )= ) ), approximate;*L*L*,

numerical.



Figure 6. Excitation strength for (a) the inner and (b) the outer layers in the Du$ng oscillator (a
1
"a

2
"1)0):

==, accurate; = ) )=, approximate; *L*L*, numerical.
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Compared with the numerical results, the accurate standard-map approach gives a
much better prediction than the approximate standard-map approach (or the
improved traditional standard map). When the excitation become strong, the
approximate standard map gives predictions poorer than the accurate standard map.
With increasing the order number of resonance, the analytical prediction given by
that approximate map becomes poor too. Note that the traditional standard map hinged
on the traditional whisker map cannot provide any correct predictions. We cannot
compute any results to make a comparison with the proposed accurate approach because
the traditional standard map [7, 10] used two equations instead of six equations of
the energy and phase changes of the p-orbits (p"a, b, c) in the improved traditional
standard maps.
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3.4. SIMULATIONS

The numerical simulations of stochastic layer are generated by using a second order
symplectic scheme [34, 35] with time step Dt"10~5}10~7¹ (where ¹"2n/X is the
perturbation period) and a precision of 10~6. The stochastic layers are illustrated through
the Poincare mapping sections de"ned like

R"G(x (t
N
), xR (t

N
)) Dsatisfying equation (13), and t

N
"

2Nn
X

#t
0
, N"0, 1, 2,2H , (44)

where x (t
N
)"x

N
, xR (t

N
)"xR

N
, and x (t

0
)"x

0
, xR

0
(t
0
)"xR

0
at t"t

0
are initial condition. The

Poincare map is P :RPR. From equation (44), the stochastic layers are generated through
the di!erential equation (equation (13)) instead of the discrete map for the initial conditions
Figure 7. Selection of (Q
0
, X) at points A}D for numerical simulations of stochastic layers. (a

1
"a

2
"1). The

two graphs are for (a) the inner layer and (b) the outer layer.



Figure 8. Poincare mapping sections of the stochastic layers in the Du$ng oscillator (a
1
"a

2
"1)0) at

Q
0
"0)01: (a) point A, X"0)5. (b) point B, X"1)0, (c) point C, X"1)5, (d) point D, X"1)8.
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(0,0). When the excitation strength is constant (Q
0
"0)01), the excitation frequencies for

numerical simulations are selected and marked by the points A}D in Figure 6. The top and
bottom graphs of Figure 7 give (X, Q

0
) for the inner and outer layers. At point A (X"0)5),

the "rst order (m"1) resonant overlap is very weak and the resonant-separatrix web is very
di$cult to be observed in the inner layer. On the other hand, in the bottom graph of
Figure 7, it is shown that the "rst order (2n!1"1) resonant overlap is very strong, and it
implies that the resonant-separatrix web will appear in the outer layer. This evidence is
clearly shown in Figure 8(a). When the excitation frequency increases to X"1)0 (point B),
a very strong, "rst order (m"1) resonant overlap appears in the inner layer, but the third
order (2n!1"3) resonant overlap becomes very weak in the outer layer. Therefore, the
resonant-separatrix web of the "rst order (m"1) exists in the inner layer, as illustrated in
Figure 8(b). At point C(X"1)5), the excitation frequency further increases to X"1)5, and
similarly, the second order (m"2) resonant overlap in the inner layer is weaker than the
third order (2n!1"3) resonant overlap in the outer layer. Therefore, the third order
(2n!1"3) resonant-separatrix web in the outer layer will be clearer than the second order
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web (m"2) in the inner layer. Such a stochastic layer characterized by the
resonance-separatrix web is plotted in Figure 8(c). Finally, at point D (X"1)8), the second
order (m"2) resonant overlap in the inner layer is much stronger than the "fth order
(2n!1"5) resonant overlap in the outer layer, and the second order (m"2)
resonant-separatrix web in the inner layer is shown in Figure 8(d).

4. CONCLUSIONS

The onset of a new resonant-overlap in stochastic layers of non-linear Hamiltonian
systems with periodical excitations is predicted analytically through the accurate and
approximate standard-map approaches. The accurate approach gives a very good
prediction compared to the numerical predictions for the lower order resonant overlap.
When the excitation is very weak, both of the two standard-map methods are in good
agreement. The accurate approach is still applicable to one-degree-of-freedom non-linear
Hamiltonian systems with strong, periodical excitations, but the further improvement
should be completed for a more accurate, analytical prediction of the onset of a new
resonant overlap in stochastic layers. The methodology presented in this paper is applicable
for general non-linear Hamiltonian systems.
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